УДК 630.424.5

ВЛИЯНИЕ КОНЕЧНОЙ ТЕМПЕРАТУРЫ ПИРОЛИЗА ДРЕВЕСИНЫ НА РАСПРЕДЕЛЕНИЕ РАДИОИОКСИЛЯДОВ СТРОНИЦИ-90 В ПРОДУКАХ ПИРОЛИЗА

© А.Ю. Сидоров*, Л.Н. Руденко

Сибирский государственный технологический университет, пр. Мира, 82, Красноярск, 660049 (Россия), e-mail: rln54@mail.ru

Рассматриваются особенности распределения радионуклидов ⁹⁰Sr в процессе пирогенетической переработки древесины березы и влияние на их распределение конечной температуры пиролиза с целью установления закономерностей распределения и обеспечения возможности прогнозирования удельной активности ⁹⁰Sr в продуктах пиролиза. Установлено увеличение удельной активности ⁹⁰Sr в древесном угле и уменьшение удельной активности ⁹⁰Sr в конденсированных продуктах пиролиза с увеличением максимальной температуры пиролиза.

Ключевые слова: радионуклиды, пиролиз, механизмы миграции радионуклидов, удельная активность, древесина березы, стронций-90.

Введение

После катастрофы на Чернобыльской АЭС у многих возникла уверенность в невозможности повторения подобной по масштабу экологической катастрофы, но авария на атомной электростанции «Фукусима-1» в Японии наглядно показала, что от выбросов радиоактивных веществ не застрахована ни одна страна мира, эксплуатирующая АЭС, даже самое совершенное оборудование и проверенная технология не гарантируют устойчивой работы ректоров в экстремальных ситуациях.

После ликвидации последствий аварии и дезактивации территории АЭС неминуемо возникают вопросы, связанные с проблемой возвращения в хозяйственный оборот территорий, подвергшихся радиационному загрязнению. Лесные экосистемы активно аккумулируют техногенные радионуклиды, включая их в свой кругооборот. Радиоактивное загрязнение лесных экосистем создает такие условия, при которых в течение многих лет невозможно обычное ведение хозяйства и многоцелевое использование леса, ведь период полураспада некоторых техногенных радионуклидов составляет десятки лет.

Исследования содержания радионуклидов в структурных частях древесины и лесных экосистемах проводятся давно, разработано много моделей миграции радионуклидов в структурных компонентах древостоя, моделей перемещения радионуклидов в лесных биоценозах, пример работы [1–3]. С сожалением приходится отметить, что основная масса исследований проведена более десяти лет назад, после чего интерес к этой проблеме постепенно сошел на нет.

При проведении лесозаготовительных работ на территориях, имеющих повышенный радиационный фон, вполне возможно использование деловой древесины, которая вследствие низкой аккумулирующей способности будет удовлетворять всем радиологическим нормативам, однако образующиеся при ее первичной переработке отходы в виде обрезков и сучьев представляют собой определенную проблему вследствие высокого содержания в них техногенных радионуклидов.

Приходится отметить, что возможности миграции техногенных радионуклидов в процессе переработки такой древесины изучены недостаточно, проводившиеся ранее исследования, например [4–9], в области возможностей использования древесины с высоким содержанием техногенных радионуклидов ана-

* Автор, с которым следует вести переписку.
лизируют особенности и направления использования деловой древесины в качестве исходного сырья для дальнейшей переработки, игнорируя проблему применения и утилизации отходов, образующихся при первичной обработке древесины. При этом исследования особенностей миграции радионуклидов в процессе пирогенетической переработки такой древесины и древесных отходов не проводились.

Цель данного исследования — разработка методических основ получения продуктов пиролиза древесины березы, обеспечивающих снижение удельной активности радионуклидов 90Sr до показателей, гарантирующих их радиационную безопасность для потребителей и исключающих возможность загрязнения окружающей среды 90Sr в процессе переработки.

Экспериментальная часть

Объектом исследования являются продукты пиролиза древесины березы, произрастающей в Сухобузимском лесхозе в квартале 45 на левом берегу Енисея на расстоянии 6 км от Горно-химического комбината (ГХК). На данной территории в древесине ранее проведенными исследованиями [1, 2, 10, 11] было проведено превышение удельной активности радионуклидов по сравнению с фоновыми показателями.

В соответствии с [12] определено количество модельных деревьев, отбор проб производился равномерно по руссу дерева с той части кроны, которая при вальке дерева не касалась земли. Отбирались ветви диаметром 30-35 мм с верхней, средней и нижней частей кроны в равных пропорциях.

Измерение активности 90Sr в пробах древесины и продуктах пиролиза производилось путем регистрации сцинтилляционных спектров бета-излучения, испускаемого веществом счетного образца, с последующей их обработкой в соответствии с типовыми методиками радиохимического анализа [13].

Для пиролиза древесины с повышенным содержанием радионуклидов использовалась лабораторная установка каменного типа, представляющая собой камеру из нержавеющей стали. Нагрев осуществляется за счет внешнего источника. Температура в центре реторты измерялась с помощью градуированной хромель-алюмельной термопары. Конденсационная система состояла из прямого холодильника и сборника жидких продуктов. Несконденсировавшаяся парогазовая смесь удалялась системой впрыскной вентиляции в атмосферу.

В качестве анализируемых факторов были выбраны: размер исходного сырья, продолжительности процесса пиролиза при заданной температуре, влажность древесного сырья и конечная температура пиролиза. Для построения математической модели и определения значимых факторов использован план Бокса-Уилсона в соответствии с рекомендациями [14], параметры плана: $k=4$, $n_{o}=4$, $\alpha=1,61$, $N=28$. Исходные данные для формирования матрицы планирования приведены в таблице 1.

Адекватность уравнения регрессии проверялась по критерию Фишера для уровня значимости 0,05 при определенных численных значениях степеней свободы дисперсии адекватности и дисперсии воспроизводимости в соответствии с [14].

Таблица 1. План эксперимента

<table>
<thead>
<tr>
<th>Параметры плана</th>
<th>Изучаемые факторы</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>размер исходного сырья, мм</td>
<td>продолжительность процесса при заданной температуре, мин</td>
<td>влажность сырья, %</td>
<td>конечная температура пиролиза, °C</td>
</tr>
<tr>
<td>Z_{1}</td>
<td>20</td>
<td>40</td>
<td>37,5</td>
<td>500</td>
</tr>
<tr>
<td>ΔZ_{1}</td>
<td>8</td>
<td>20</td>
<td>12,5</td>
<td>200</td>
</tr>
<tr>
<td>$+1$</td>
<td>28</td>
<td>60</td>
<td>50</td>
<td>700</td>
</tr>
<tr>
<td>-1</td>
<td>12</td>
<td>20</td>
<td>25</td>
<td>300</td>
</tr>
<tr>
<td>$+\alpha$</td>
<td>32,9</td>
<td>72,2</td>
<td>57,6</td>
<td>820</td>
</tr>
<tr>
<td>$-\alpha$</td>
<td>7,1</td>
<td>7,8</td>
<td>17,4</td>
<td>180</td>
</tr>
</tbody>
</table>

Обсуждение результатов

Определение удельной активности радионуклидов в исходном древесном сырье радиохимическим методом показало, что среднее значение удельной активности 90Sr составляет $0,95 \pm 0,52$ Бк/кг. В соответствии с требованиями [15] радиологические нормы для древесного технологического сырья, предназначенного для дальнейшей переработки, составляют 1900 Бк/кг.

В соответствии с планом эксперимента было проведено определение удельной активности радионуклидов 90Sr в древесном угле и конденсированных продуктах пиролиза. После отсева незначимых коэф-
факторов, для чего использовались табличные [14] значения t-критерия Стьюдента для уровня значимости 0,05, получены уравнения регрессии, представленные в формуллах 1 и 2:

\[y_1 = 2,54 + 0,16x_1 + 0,45x_2 - 0,04x_1^2 - 0,03x_2^2; \]
(1)

\[y_2 = 0,89 - 0,18x_1 - 0,14x_2 + 0,04x_1x_2 + 0,01x_2^2; \]
(2)

где \(y_1 \) – содержание \(^{90}\text{Sr}\) в древесном угле; \(y_2 \) – содержание \(^{90}\text{Sr}\) в конденсированных продуктах пиролиза; \(x_1 \) – размер исходного сырья; \(x_2 \) – конечная температура пиролиза.

Установлено, что влажность древесного сырья и продолжительность процесса пиролиза не оказывают влияния на миграцию радионуклидов, сведения об особенностях влияния фракционного состава на миграцию \(^{90}\text{Sr}\) находятся в печати.

Результаты исследования влияния температуры на удельную активность радионуклидов \(^{90}\text{Sr}\) в древесном угле и конденсированных продуктах пиролиза, а также выходы продуктов пиролиза показаны на рисунке.

Полученные зависимости показывают увеличение удельной активности \(^{90}\text{Sr}\) в древесном угле с увеличением максимальной температуры пиролиза: содержание \(^{90}\text{Sr}\) в древесном угле увеличилось более чем в 3 раза (с 0,95 Бк/гр в исходном сырье до 3,23 Бк/гр в древесном угле). Между тем с увеличением конечной температуры пиролиза содержание радионуклидов \(^{90}\text{Sr}\) в конденсированных продуктах пиролиза снижается в 1,5 раза с 0,91 Бк/гр до 0,59 Бк/гр.

Увеличение конечной температуры пиролиза оказывает непосредственное влияние на выход древесного угля, соответственно, при максимальной температуре пиролиза выход древесного угля будет минимальным, при этом содержание радионуклидов на единицу объема угля будет увеличиваться пропорционально уменьшению объема образующегося древесного угля.

Полученные результаты по особенностям миграции \(^{90}\text{Sr}\) в процессе пиролиза согласуются с ранее проведенными исследованиями в части механизма образования аэрозолей в результате конденсации летучих соединений радионуклидов из газовой фазы и в результате механического отрыва веществ и перемещения радионуклидов при температурном воздействии в биксилдорной среде [16, 17].

Графические зависимости влияния конечной температуры на удельную активность радионуклидов \(^{90}\text{Sr}\) в продуктах пиролиза и выходы продуктов пиролиза
Полученные данные ставят под сомнение обоснованность радиологических нормативов [15] для древесного сыра, используемого при пиролизе. При увеличении более чем в 3 раза удельной активности 90Sr в древесном угле по сравнению с исходным древесным сырем возникает достаточно серьезный риск для здоровья использующих такой угол людей в бытовых целях, ведь для древесины топливной установлено предельное значение удельной активности 90Sr на уровне 370 Бк/кг [18]. Достигение данного показателя в древесном угле возможно уже при удельной активности 90Sr в древесном сырье более 110 Бк/кг.

Выводы

В результате исследований установлено, что конечная температура пиролиза влияет на перемещение 90 Sr в процессе пиролиза: с повышением конечной температуры пиролиза удельная активность 90 Sr в древесном угле возрастает, при этом удельная активность 90 Sr в конденсированных продуктах пиролиза снижается. Полученные результаты ставят вопрос о необходимости изменения радиологических нормативов [15], в части, касающейся древесного сырья, используемого для пиролиза. Необходимо установление взаимоувязанных с нормативами [18] требований к удельной активности радионуклидов в древесном сырье для пиролиза, не превышающей порог 100 Бк/кг. Введение таких нормативных требований позволит гарантировать радиационную безопасность для потребителей продуктов пиролиза, полученных из древесины с повышенным содержанием техногенных радионуклидов.

Список литературы

2. Сухоруков Ф.В., Дегерманджий А.Г., Болусновский А.Я. Закономерности распределения и миграции радионуклидов в долине реки Енисей / под ред. В.Ф. Шабалина, А.Г. Дегерманджий. Новосибирск, 2004. 287 с.
15. ГОСТ Р 50801-95. Древесное сырье, лесоматериалы, полуфабрикаты и изделия из древесины и древесных материалов. Порядок отбора проб и методы измерения удельной активности радионуклидов.
18. СП 2.6.1.759-99. Санитарные правила. Допустимые уровни содержания цезия-137 и стронция-90 в продукции лесного хозяйства.

Поступило в редакцию 4 июля 2011 г.
После переработки 24 сентября 2011 г.