УДК 54.061

АНАЛИЗ МОДИФИЦИРОВАННОЙ ЦЕЛЛЮЛОЗЫ МЕТОДОМ ИК-СПЕКТРОСКОПИИ*

© И. В. Котенёва**, В. Н. Сидоров, И. А. Котлярова

Московский государственный строительный университет, Ярославское шоссе, 26, Москва, 129337 (Россия) e-mail: sudeykina@mail.ru, ikotlyarova@list.ru

Для изучения характера взаимодействия целлюлозы с составами на основе борознных соединений проведен подробный анализ модифицированной целлюлозы методом ИК-Фурье-спектроскопии. Установлено, что при модификации целлюлозы составами на основе борознных соединений на поверхности образуются гидролитически устойчивые эфиры, содержащие четырехкоординационные атомы бора и азота. При этом не происходит заметного разрушения внутримолекулярных связей, увеличивается степень кристалличности (упорядоченности) подложки. Взаимодействие модификатора осуществляется с гидроксильными группами целлюлозы, расположенными у шестого атома углерода глюкозироанного кольца. Постадийная обработка растворами борной кислоты и аминосилитров в различной последовательности не приводит к образованию гидролитически устойчивых борознных соединений с четырехкоординационными атомами бора и азота на поверхности целлюлозы. В этом случае борная кислота и аминосилитры взаимодействуют с подложкой независимо друг от друга.

Ключевые слова: целлюлоза, поверхность, борознное соединение, модификатор, подложка, ИК-спектроскопия, эфиры целлюлозы, внутримолекулярные водородные связи, межмOLEкулярные водородные связи, ОН-группы.

Введение

В присутствии четырехкоординационных борознных соединений происходит образование гидролитически устойчивых эфиров целлюлозы [1]. Этот факт имеет огромное практическое значение. Дело в том, что при нанесении водных растворов таких аскорбатных соединений на поверхность древесины последняя приобретает стопроцентную биостойкость на срок не менее 20 лет (по заключению лаборатории тропических исследований НПЭЭ РАН) [2]. Кроме того, составы на основе воды и указанных борознных соединений обеспечивают вторую группу огнезащитной эффективности и значительно повышают адгезию лакокрасочных материалов к древесине [2, 3]. Для изучения характера взаимодействия целлюлозы с составами на основе борознных соединений проведен подробный анализ модифицированной целлюлозы методом ИК-Фурье-спектроскопии.

Экспериментальная часть

Спектры исследуемых образцов регистрировали на ИК-Фурье-спектрометре Magna-750 фирмы Nicolet (США) в средней инфракрасной области 4000–400 см⁻¹ со спектральным разрешением 2 см⁻¹. В качестве образцов использовали измельченным механическим путем целлюлозу. Модифицирование целлюлозы осуществляли при комнатной температуре методом погружения в водные растворы модификаторов при постоянном перемешивании в течение 3 ч. Избыток модификатора удаляли с поверхности целлюлозы путем экстракции дистилированной водой. Модифицированные образцы высушивали при комнатной температуре до постоянной массы. Для приготовления образцов целлюлозу растирали с КВг (примерно 2 мг вещества на 100 мг КВг) и прессовали в таблетки, от которых и были получены спектры. Спектр чистого КВг (в котором всегда есть небольшое количество адсорбированной воды) вычитали из полученных спектров.

Необходимо отметить, что модифицирование осуществлялось двумя принципиально разными способами. Первый предполагает обработку целлюлозы составом на основе воды и борознного соединения. Четырехкоординационные борознные соединения получали путем взаимодействия борной кислоты (БК) с моноэтаноламином (МЭА) и диэтаноламином (ДЭА) (при молярном соотношении 1 : 1) в водной среде. Для идентификации продуктов реакций их растворяли в 600 мл D₂O и регистрировали спектры ЯМР 11B на спектрометре.

** Автор, с которым следует вести переписку.

В ЯМР-спектре продукта взаимодействия борной кислоты с монозеаноламином отмечается сдвиг, равный 5,5799, что соответствует структуре монозеаноламин(N→B)-тригидроксиборана (HO₂B—NH₄(CH₂)₃OH [8]. В спектре продукта взаимодействия борной кислоты с диэтаноламином отмечается два сдвига: первый (5,8655) соответствует структуре диэтаноламин(N→B)-тригидроксиборана (HO₂B—NH₂(CH₂OH)₂; второй (9,2662) – структуре диэтаноламин(N→B)-бората [8]. Примеч диэтаноламин(N→B)-борат и диэтаноламин(N→B)-тригидроксиборан при взаимодействии эквимольных количеств борной кислоты и диэтаноламина образуются в соотношении 3 : 1 по массе. Полученные борознотные соединения были использованы для создания защитных составов. Состав 1 – 50%-ный водный раствор монозеаноламин(N→B)-тригидроксиборана; состав 2 – 50%-ный водный раствор, содержащий диэтаноламин(N→B)-борат и диэтаноламин(N→B)-тригидроксиборан в соотношении 3 : 1 по массе.

Второй способ модифицирования подразумевает постадийную обработку целлюлозы исходными веществами (растворами борной кислоты и аминосерпент) в различной последовательности. Концентрация раствора борной кислоты составляла 5% по массе (это ее максимальная растворимость при температуре 20 °C). Концентрация растворов монозеаноламин- и диэтаноламинов составляла 25% по массе (такое же количество спирта использовалось для получения 50%-ных водных растворов борознотных соединений).

Обсуждение результатов

При модификации целлюлозы составами 1 и 2 наблюдаются незначительные изменения в ИК-спектрах. Это указывает на процесс «мягкого» модифицирования, при котором не происходит разрушения внутримолекулярных связей целлюлозы.

В работе [1] с помощью метода РФЭС установлено, что при модификации целлюлозы составами на основе борознотных соединений на ее поверхности образуются гидролитически устойчивые эфиры, содержащие четырехкоординационные атомы бора и азота. Значения характеристических частот связей N→B, B–O в составе модификаторов совпадают со значениями частот связей C–C, C–O макромолекул целлюлозы, поэтому в спектрах модифицированной целлюлозы происходит наложение полос поглощения. В связи с этим мы оценивали интенсивность соответствующих пиков при химическом модифицировании целлюлозы относительно внутреннего стандарта, за который был принят пик частотой ~800 см⁻¹, соответствующий валентным колебаниям глюкопиранозного кольца целлюлозы (табл. 1).

Широкая полоса поглощения в области 3700–3100 см⁻¹ ИК-спектра целлюлозы связана с валентными колебаниями гидроксильных групп, вовлеченных в водородные связи. Известно, что низкочастотная область полосы νOH характеризует гидроксильные, включенные в более сильные водородные связи (внутримолекулярные), а высокоочастотная – в более слабые (межмолекулярные) [5].

Таблица 1. Интенсивность некоторых полос поглощения относительно внутреннего стандарта

<table>
<thead>
<tr>
<th>Относительная интенсивность</th>
<th>Немодифицированная целлюлоза</th>
<th>Целлюлоза + состав 1</th>
<th>Целлюлоза + состав 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₁₁₀/D₀₀₀ (1200 см⁻¹ – валентные колебания связи B–N в тетраэдре модификаторов, симметричные валентные колебания глюкоизидной связи в молекулах целлюлозы)</td>
<td>2,66</td>
<td>4,32</td>
<td>3,18</td>
</tr>
<tr>
<td>D₁₉₀/D₀₀₀ (1340 см⁻¹ – валентные колебания сложноэфирной связи, B–O–C, деформационные колебания O–H-групп целлюлозы в плоскости)</td>
<td>2,72</td>
<td>4,53</td>
<td>3,29</td>
</tr>
<tr>
<td>D₂₁₀/D₀₀₀ (2910 см⁻¹ – валентные колебания C–H связей)</td>
<td>2,56</td>
<td>4,37</td>
<td>2,96</td>
</tr>
</tbody>
</table>
В спектрах модифицированной целлюлозы (см. приложение) наблюдается смещение полосы поглощения ν\textsubscript{OH}, а именно увеличение поглощения со стороны высоких частот, особенно в спектре целлюлозы, модифицированной составом 2. Согласно литературным источникам [6] это связано с увеличением доли гидроксильных, вовлеченных в слабые водородные связи. Вероятно, реакции модификации в обоих случаях идут преимущественно по первичной, стерически более доступной гидроксильной группе, расположенной у C\textsubscript{6}-атома глюкопиранозного цикла. Валентные колебания С–Н связей метиленовых и метиновых групп целлюлозы проявляются в области 3000–2800 см\(^{-1}\) [7]. В спектрах модифицированных целлюлоз эти валентные колебания накладываются на поглощение групп CH\(_2\), входящих в состав боратных соединений. Это приводит к увеличению интенсивности полос поглощения частотой ~2900 см\(^{-1}\), так как при модификации происходит привитие на поверхность образцов целлюлозы производных, содержащих дополнительные группы CH\(_2\).

В области ~1650 см\(^{-1}\) поглощают молекулы адсорбированной воды. При увеличении содержания воды максимум полосы поглощения несколько смещается в сторону больших волновых чисел [7]. Привитие кислотных гидроксилов –OH и полярных аминогrupп, входящих в состав модификаторов, увеличивает полярность подложки, что способствует удержанию у поверхности модифицированных образцов целлюлозы большего количества адсорбированной воды за счет водородных связей.

Полосы поглощения (полосы кристалличности) частотой ~1431 см\(^{-1}\) (полоса кристалличности) и ~900 см\(^{-1}\) (полоса аморфности) в спектре исходной целлюлозы соответствуют ножичным колебаниям метиленовой группы и колебаниям атома C\(_1\) и четырех окружающих его атомов в спектрах β-глюкозидных структур. При увеличении степени кристалличности (СК) целлюлозы, в результате механической или химической модификации, интенсивность полосы 1431 см\(^{-1}\) увеличивается, а 900 см\(^{-1}\) – уменьшается [7], что и наблюдается в спектрах модифицированных образцов. Такое изменение интенсивности полос поглощения указанных частот свидетельствует об увеличении СК у образцов модифицированной целлюлозы.

Полоса ~1060 см\(^{-1}\) в спектре целлюлозы приписываются валентному колебанию С–О связи в HS\(^{-}–\)ОН группе. Полосу ~1030 см\(^{-1}\) соотносят с валентными колебаниями С–О связи в первичной спиртовой группе в различных конформациях. В спектрах целлюлозы, модифицированной и составом 1, и составом 2, уменьшение интенсивности пика частотой ~1030 см\(^{-1}\) по сравнению с пиком частотой ~1060 см\(^{-1}\) свидетельствует о том, что в модифицировании участвуют гидроксильные группы у C\(_6\).

Необходимо отметить, что анализ ИК-спектров образцов целлюлозы, модифицированных постдийамин, представляет определенные трудности, так как все спектры качественно похожи (см. приложение). Однако известно [5], что химическое модификация целлюлозы приводит к изменениям, прежде всего в области 3700–3100 см\(^{-1}\), широкая полоса поглощения в которой соответствует валентным колебаниям гидроксильных групп, включенных в водородные связи. В работе [5] для характеристики полосы ν\textsubscript{OH} предлагается следующее выражение: индекс симметрии (отношение левой (α) и правой (β) частей ширины полосы поглощения OH-групп, измеренных от середины перпендикуляра, проведенного через максимум) и положение максимума поглощения ν\textsubscript{OH}, причем уменьшение индекса симметрии свидетельствует об увеличении степени замещения при химическом модифицировании целлюлозы [5]. Кроме того, мы рассчитали индекс кристалличности (отношение оптических плотностей D\(_{1380}\)/D\(_{900}\)) для каждого образца и проанализировали смещение полосы поглощения в области ~1630–1655 см\(^{-1}\), а также изменение интенсивности этой полосы по сравнению с соседними пиками. Интенсивность полосы поглощения ~1630–1655 см\(^{-1}\) позволяет сделать предположения о наличии аминогрупп –NH\(_2\) и –NH в составе модифицированной целлюлозы. В таблице 2 представлены некоторые характеристики полос ν\textsubscript{OH}, 1630–1655 см\(^{-1}\) и значения индекса кристалличности.

Из таблицы 2 видно, что при модификации целлюлозы растворами борной кислоты, моно- и диэтаноламинов, а также растворами борной кислоты и аминоспиртов в различной последовательности максимум поглощения OH-групп смещается в сторону больших волновых чисел, индекс симметрии уменьшается, индекс кристалличности увеличивается. Это указывает на изменения в системе водородных связей, действующих между гидроксилами целлюлозы, причем, на уменьшение количества гидроксильных групп, связанных более прочными водородными связями, т.е. на наличие химического взаимодействия между молекулами всех модификаторов и спиртовыми группами целлюлозы. Исходя из значения индекса симметрии, степень замещения гидроксилами целлюлозы уменьшается в следующей последовательности: целлюлоза + BK > целлюлоза + BK + ДЭА > целлюлоза + BK + МЭА > целлюлоза + МЭА + BK > целлюлоза + ДЭА + BK > целлюлоза + МЭА + целлюлоза + ДЭА + BK > целлюлоза + МЭА + целлюлоза + ДЭА, т.е. плотность прививки при последовательном модифицировании выше, если на первой стадии целлюлоза этерифицируется борной кислотой. Причем при модификации борированной целлюлозы растворами аминоспиртов степень замещения уменьшается (индекс симметрии увеличивается). Вероятно, это связано с гидролизом сложноэфирных связей, образованных между борной кислотой и гидроксильными группами целлюлозы, и вымыванием борной кислоты в процессе модификации водными растворами аминоспиртов и последующей экстракцией.
Таблица 2. Сравнительная характеристика ИК-спектров модифицированной и нативной целлюлозы

<table>
<thead>
<tr>
<th>Образцы</th>
<th>Индекс симметрии (a/a)</th>
<th>max ν₀κ, см⁻¹</th>
<th>Индекс кристалличности (D₁₁₀/D₀₀₂)</th>
<th>Полоса ~1630–1655 см⁻¹ (интенсивность по отношению к соседним полосам)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Немодифицированная целлюлоза</td>
<td>1</td>
<td>3340</td>
<td>1,35</td>
<td>1647</td>
</tr>
<tr>
<td>Целлюлоза + БК</td>
<td>0,53</td>
<td>3427</td>
<td>2,18</td>
<td>1641 (уменьши)</td>
</tr>
<tr>
<td>Целлюлоза + МЭА</td>
<td>0,69</td>
<td>3424</td>
<td>1,78</td>
<td>1636 (уменьши)</td>
</tr>
<tr>
<td>Целлюлоза + ДЭА</td>
<td>0,69</td>
<td>3395</td>
<td>2,02</td>
<td>1644 (уменьши)</td>
</tr>
<tr>
<td>Целлюлоза + БК + МЭА</td>
<td>0,62</td>
<td>3408</td>
<td>1,82</td>
<td>1643 (уменьши)</td>
</tr>
<tr>
<td>Целлюлоза + БК + ДЭА</td>
<td>0,57</td>
<td>3416</td>
<td>1,94</td>
<td>1636 (уменьши)</td>
</tr>
<tr>
<td>Целлюлоза + МЭА + БК</td>
<td>0,64</td>
<td>3428</td>
<td>1,85</td>
<td>1640 (уменьши)</td>
</tr>
<tr>
<td>Целлюлоза + ДЭА + БК</td>
<td>0,68</td>
<td>3413</td>
<td>1,93</td>
<td>1636 (уменьши)</td>
</tr>
</tbody>
</table>

При модификации на первом этапе аминопротив и далее борной кислотой степень замещения выше (индекс симметрии меньше), чем при модификации только аминопротив. Мы предполагаем, что это связано с тем, что молекулы борной кислоты взаимодействуют не с реакционно-способными группами моно- и диэтаноламинов, а независимо от них с гидроксильными группами целлюлозы. Такой характер взаимодействия модификаторов и подложки не приводит к образованию четырехкоординационных боратных соединений на поверхности целлюлозы. Это подтверждает и тот факт, что при модификации целлюлозы растворами аминопротив резко увеличивается относительная интенсивность полосы поглощения в области 1630–1655 см⁻¹, что связано с наличием аминогрупп, содержащихся в трехкоординационный атом азота в составе модифицированных образцов. В спектрах целлюлозы, модифицированной составами 1 и 2, интенсивность этой полосы невелика и обусловлена деформационными колебаниями адсорбированных молекул воды (поглощают в той же области).

Выводы

При модификации целлюлозы составами на основе боратных соединений на поверхности образуются гидролитически устойчивые эфирные, содержащие четырехкоординационные атомы бора и азота. При этом не происходит заметного разрушения внутримолекулярных связей, увеличивается степень кристалличности (упорядоченность) подложки. Взаимодействие модификатора осуществляется с гидроксильными группами целлюлозы, расположенными у шестого атома углерода глюкопиранозного кольца.

При модификации поверхности полимеров пористость борной кислоты и аминопротив взаимодействуют независимо друг от друга. Последовательная обработка не приводит к образованию гидролитически устойчивых боратных соединений на поверхности целлюлозы.

Электронный дополнительный материал

Список литературы

5. Петровский О. Г. Гидрофильные частично замещенные эфиры целлюлозы и их модификация путем химического сшивания. Л., 1988. 298 с.
8. 11В NMR Chemical Shifts. [Электронный ресурс] URL: http://www.chemistry.sdsu.edu/research/BNMR/.