СРАВНИТЕЛЬНАЯ ОЦЕНКА АНТИОКСИДАНТНОЙ АКТИВНОСТИ
ЭФИРНЫХ МАСЕЛ ПРАЯНО-АРОМАТИЧЕСКИХ РАСТЕНИЙ МЕТОДОМ
КАПИЛЛЯРНОЙ ГАЗОВОЙ ХРОМАТОГРАФИИ

© А.Л. Самусенко

Институт биохимической физики им. Н.М. Эмануэля РАН, ул. Косыгина, 4,
Москва, 119991 (Россия) e-mail: Samusenko.alexey@rambler.ru

Методом капиллярной газожидкостной хроматографии исследованы антиоксидантные свойства эфирных масел черного перца (Capsicum nigrum L.), имбири (Zingiber officinale L.), кардамона (Elettaria cardamomum), ягод можжевельника (Juniperus pinchoti), фенхеля (Foeniculum officinale), массы (Myristica fragans L.), лимонной травы (Cymbopogon citratus) и семян тмина (Carum carvi). Оценка антиоксидантных свойств проведена по реакции окисления транс-2-гексена в соответствующую кислоту. Найдено, что наибольшей антиоксидантной активностью областено эфирное масло масы, а наименьшей – черного перца. Изучены изменения в составе эфирных масел при их длительном хранении на свете. Антиокисление исследованных эфирных масел сопоставлено с их антиоксидантной активностью.

Ключевые слова: прямо-ароматические растения, эфирные масла, антиоксидантная активность, капиллярная газовая хроматография.

Введение

Использование природных антиоксидантов в пищевых продуктах, напитках и парфюмерной промышленности в последние время значительно возросло вследствие растущего интереса потребителей к ингредиентам природного происхождения, так как синтетические добавки потенциально вредны [1, 2]. В связи с этим отмечено [3], что альтернативой синтетическим антиоксидантам могут служить эфирные масла прямо-ароматических растений. Известно, что эфирные масла замедляют окисление жиров и микробиологическую порчу продуктов [4–6]. Поэтому в настоящее время большое внимание уделяется изучению биологической активности эфирных масел, в том числе антиоксидантной [7–12].

Показано, что антиоксидантная активность прямо-ароматических растений, важными компонентами которых являются эфирные масла, сравнима с активностью традиционно применяемых синтетических антиоксидантов, например, бутилированных гидроксисианола и гидрокситолуола и даже превосходит их [7]. Используя различные методы оценки антиоксидантной активности – фотореоптическую методику (PCL) [13], обесцвечивание β-каротина [14], устранение 1,1-дифенил-2-пикрилхлорид-радикала (DPPH) [15] и реакцию окисления альдегида до карбоновой кислоты [16], изучены антиоксидантные свойства эфирных масел тмина, розмарина, имбири, курумы, лимонной травы, лавры, кардамона и фенхеля [7, 8, 9, 17], а также перечного и зеленого чая [18].

Биологическая активность эфирных масел зависит от присутствующих в них основных компонентов, т.е. от их состава. Известно, что наличие в составе масел циклических монотерпеновых углеводородов с двумя двойными связями в цикле – α- и γ-терпиненов, α-терпинолена и сабинена, а также эвгенола, тимола и карвакрола [16, 17, 19] – обусловливает их антиоксидантные свойства. Однако состав эфирных масел не постоянен, зависит от географического распространения и технологического разнообразия растений [20], а также от времени и условий хранения масел [21]. Было показано, что эфирные масла душицы [22], гвоздики и кардамона [23], кимона, розового грейпфрута и кориандра [24] и майорана [25] существенно изменялись при хранении и основным процессом являлось автоокисление.

Цель работы – изучение антиоксидантных свойств эфирных масел черного перца, имбири, кардамона, можжевельника, фенхеля, массы, лимонной травы и тмина и сопоставление антиоксидантной активности с составом эфирных масел и его изменением в процессе автоокисления.
Экспериментальная часть

Исследовали свежие образцы эфирных масел: черного перца, имбиря, кардамона, ягод можжевельника, фенхеля, масляка («Plant Lipids Ltd», Индия), лимонной травы («Synthite», Индия) и семян тмина («Lionel Hitchen», Великобритания).

Для оценки антисанитарных свойств эфирных масел в 20 мл н-гексана растворили 160 мкл транс-2-гексенала и 160 мкл н-лодекана, который служил внутренним стандартом. Растор растворили на аликвоты по 2 мл, которые поместили в стеклянные пробирки объемом 10 мл, и добавили по 200 мкл перечисленных выше эфирных масел. В контрольный образец масло не добавляли. Каждый образец был приготовлен двукратно. Образцы в закрытых пробках пробирках держали на свету при комнатной температуре. Источником света служило естественное освещение в лаборатории. Каждую неделю пробирки открывали и продували 10 мл воздуха с помощью пипетки. Количественное содержание транс-2-гексенала в пробирках определяли методом капиллярной газовой хроматографии через каждые 6–8 сут, а изменение содержания компонентов в составе эфирных масел фиксировали на момент окисления 50% исходного количества альдегида в каждом образце.


Результаты и обсуждение

Для оценки антисанитарной (АО) активности исследуемых эфирных масел, перечисленных в таблице 1, мы использовали тест «альдегид/ карбоновая кислота» [16]. Этот метод успешно применяли для проверки АО активности летучих экстрактов из различных растений, например, гвоздики и экваластира [27] и некоторых сортов зеленого и черного чая [18].

В качестве альдегида нами выбран транс-2-гексеналь, который окисляется до 2-гексеновой кислоты, в качестве критерия оценки АО активности – «период полуокисления» (ПО) альдегида, т.е. время, в течение которого окислялась половина исходного количества альдегида. Как видно из рисунка 1, все исследованные масла обладали различной АО активностью. В контрольном растворе ПО альдегида составлял 21 сут, в то время как наличие в растворе эфирных масел в той или иной степени ингибировало окисление альдегида. Результаты, приведенные на рисунке 1, показывают, что интервал значений ПО альдегида в различных эфирных маслах достаточно широк. В то время, как для масла черного перца, обладающего минимальной АО активностью, ПО составляет только 42 сут, для масла маисса, обладающего максимальной АО активностью, величина ПО достигает 103 сут, т.е. в 2,5 раза больше. Для остальных эфирных масел получили промежуточные значения ПО альдегида, причем интересно, что по этим величинам их можно расположить по-парно, а именно – лимонная трава и имбирь, фенхель и тмин, кардамон и можжевельник. Анализ полученных данных позволяет выстроить ряд убывающей АО активности восьми исследованных эфирных масел:

маис > лимонная трава = имбирь > фенхель = тмин > кардамон = можжевельник = черный перец.

Изменение АО активности эфирных масел в процессе автокисления могут быть непосредственно связаны с изменением их состава. Данные, представленные на рисунках 2–9, отражают изменения в составе всех изученных масел, происшедшие за время, равное ПО альдегида для каждого масла соответственно.

Основными компонентами эфирного масла черного перца являются β-карнифиллен, 1,8-цинеол, лимонен и мононепропеновые углеводороды. Как видно из рисунка 2, наблюдали значительное окисление сесквирепепреновых углеводородов, особенно β-карнифиллена и, как следствие, увеличение содержания его оксида. Мононепропеновые углеводороды, за исключением α-фелландрена, окислялись в гораздо меньшей степени, причем у-терпинен и α-терпинилен, которые, как известно, являются сильными антисанитарами, за время хранения масла окислились полностью. Их исходное содержание в масле было невелико и этим, вероятно, объясняется сравнительно низкая АО активность эфирного масла черного перца (см. рис. 1).

В связи с тем, что эфирное масло имбиря является не только ароматизирующей пищевой добавкой, но и используется в фармацевтической промышленности, изучение его АО свойств представляет особый
интерес. АО активность экстрактов имбиря изучена в работах [28–29]. Полученные нами данные показывают, что изменение в составе эфирного масла имбиря связано в основном с окислением сесквитерпеновых углеводородов (рис. 3). Содержание цингиберена, который является ключевым компонентом этого масла, снизилось практически в 30 раз, β-сесквифелландрена и β-бисаболена – в 2 раза, при этом наблюдали существенное изменение запаха имбирного масла. Деградация монотерпеновых углеводородов практически не происходила. Можно полагать, что основным антиоксидантом эфирного масла имбиря являлся цингиберен. По своей АО активности имбирь уступал только эфирному маслу мациса (см. рис.1).

На рисунках 4 и 5 представлены результаты изменения состава летучих компонентов эфирных масел кардамона и ягод можжевельника. Оба масла имеют одинаковое значение ПО альдегида и, следовательно, одинаковую АО активность. Содержание основных компонентов эфирного масла кардамона – 1,8-цинеола и терпинил цетатата изменилось за время хранения незначительно, монотерпеновые углеводороды подверглись окислительной деградации также в незначительной степени. Практически не изменилось содержание цитралей. Как и следовало ожидать, полностью окислились α- и γ-терпинены и α-терпинолен. По-видимому, антиоксидантами в эфирном масле кардамона являлись именно эти соединения. Эфирное масло ягод можжевельника имеет в своем составе много общих соединений с кардамоном, но содержит значительно больше монотерпеновых углеводородов, основными из которых являются α-пинен и β-мирен, а также лимонен. Их окисление произошло приблизительно в той же степени, что и в эфирном масле кардамона. Кроме того, наблюдали окисление сесквитерпенов, которые практически не содержатся в масле кардамона. Интересно отметить, что суммарное содержание α-, γ-терпиненов и α-терпинолена в обоих маслах примерно одинаково, а именно эти соединения обладают высокой АО активностью по сравнению с другими монотерпенами [19]. Учитывая все эти факторы, одинаковую АО активность эфирных масел кардамона и можжевельника можно объяснить аналогичным характером их автоокисления при хранении.

На рисунке 6 представлено изменение основных компонентов эфирного масла фенхеля – транс-анетола, фенона, эстрогола (метилхавикола) и лимонена. В процессе хранения особенно заметному окислению подвергся транс-анетол, который частично окислялся до ацетинового альдегида, а частично превращался в цис-изомер, обладающий токсичностью [21]. Содержание α- и γ-терпиненов, α-терпинолена в эфирном масле фенхеля невелико, поэтому основным антиоксидантом в данном образце являлся транс-анетол. Однако, как показано в [9], он значительно уступает по своим АО свойствам γ-терпинену. Вероятно, вследствие этого ПО альдегида в эфирном масле фенхеля составляет только 54 сут, в то время как в эфирном масле мациса с большим содержанием γ-терпинена величина ПО альдегида в 2 раза больше (см. рис. 1). Из всех масел, изученных в данной работе, эфирное масло мациса, как было отмечено выше, обладало наибольшей АО активностью. Этот факт может быть объяснен его составом: содержание монотерпеновых углеводородов очень высоко и на 1–2 порядка превышает их содержание в масле фенхеля. На рисунке 7 приведена хроматограмма эфирного масла мациса; начальный участок хроматограммы представляет собой хроматографические пики именно монотерпеновых углеводородов – α-пинен, сабинена, β-пинен, α-терпинол, лимонен и др.. Ни один из сильных антиоксидантов в масле мациса (α- и γ-терпинены, α-терпинолен) не успевает окислиться полностью за время хранения, превышающее 3 мес. (рис. 8). За исключением α-фелландрена и некоторых минорных компонентов, например, β-карнофилена, состав эфирного масла мациса изменился незначительно. Необходимо отметить, что источником эфирного масла мациса является кожура мускатного ореха, который отличается не только высокой АО активностью, но и применяется в фармацевтике, так как обладает антибактериальными свойствами и улучшает метаболизм глюкозы и инсулина [30].

На рисунках 9 и 10 представлено изменение состава эфирных масел лимонной травы и семян тымии. Основными компонентами масла лимонной травы являлись цитрали – нерал и гераналил, содержание которых за время хранения масла существенно уменьшилось. Окисление лимонена и лимоналона привело к увеличению содержания эпоксилимонена и появленню в составе масла цис- и транс-изомеров лимоналона оксида соответственно. Содержание γ-терпинолен в масле лимонной травы было невелико, и оно не изменилось. Следует полагать, что антиоксидантами в данном образце являлись цитрали; их окисление приводило к изменению запаха масла. Окисление подвергались и другие альдегиды, входящие в состав масла лимонной травы – цитронеллаль и деканаль, а также спиры – цитронеллол и гранатол (рис. 8). В отличие от эфирного масла мациса, рассмотренного выше, состав масел лимонной травы резко изменился, но АО активность была достаточно высокой. Полученные нами результаты находятся в соответствии с данными работы [8], авторы которой обнаружили, что масло, содержащее большое количество цитралей, обладают высокой АО активностью. В той же работе отмечена низкая АО активность масел с высоким содержанием монотерпеновых углеводородов.
Рис. 1. Период полукисления (сут) транс-2-гексена в различных эфирных маслах:
1 – контроль, 2 – черный перец, 3 – можжевельник, 4 – кардамон, 5 – тмин, 6 – фенхель, 7 – лимонная трава, 8 – имбирь, 9 – маис

Рис. 2. **Черный перец**: 1 – α-пинен, 2 – сабинен, 3 – β-пинен, 4 – лимонен + 1,8-цинеол, 5 – γ-терпинен, 6 – α-терпинолен, 7 – β-карнофиллен, 8 – миристицин

Рис. 3. **Имбирь**: 1 – α-пинен, 2 – камфен, 3 – β-мирицен, 4 – 1,8-цинеол, 5 – α-терпинолен, 6 – цингиберен, 7 – β-бисаболен, 8 – β-сесквифелландрен.

Рис. 4. **Кардамон**: 1 – α-пинен, 2 – сабинен, 3 – α-терпинен, 4 – 1,8-цинеол, 5 – γ-терпинен, 6 – α-терпинолен, 7 – нераль, 8 – гераниаль, 9 – терпинил ацetat

Рис. 5. **Можжевельник**: 1 – α-пинен, 2 – β-мирицен, 3 – лимонен, 4 – γ-терпинен, 5 – α-терпинолен, 6 – β-карнофиллен

Рис. 6. **Фенхель**: 1 – α-пинен, 2 – β-мирицен, 3 – лимонен, 4 – фенхол, 5 – эстрогол, 6 – транс-анетол

Примечание: общая подписи к рисункам 2–6: «Изменение основных компонентов эфирных масел (в % от исходного количества) прямо-ароматических растений в процессе хранения на свету (первый столбец – до, второй – после окисления)».

*Исходное количество любого из указанных компонентов масла (до процесса окисления) принималось равным 100%.*
Рис. 7. Хроматограмма эфирного масла мацца (условия анализа – см. «Экспериментальную часть»)

Рис. 8. **Масло:** 1 – α-пинен, 2 – сабинен, 3 – β-пинен, 4 – α-терпинен, 5 – лимонен + 1,8-цинеол, 6 – γ-терпинен, 7 – α-терпинолен, 8 – 4-терпинеол, 9 – мирицицин

Рис. 9. **Лимонная трава:** 1 – камфен, 2 – лимонен, 3 – γ-терпинен, 4 – α-терпинолен, 5 – линалоол, 6 – нераль, 7 – гераниол, 8 – гераниаль

Рис. 10. **Тмин:** 1 – α-пинен, 2 – сабинен, 3 – б–мирцен, 4 – лимонен, 5 – γ-терпинен, 6 – дигидрокарван, 7 – дигидрокарвело, 8 – карван

Примечание: Общая подпись к рисункам 8–10: «Изменение* основных компонентов эфирных масел (в % от исходного количества) прямо-ароматических растений в процессе хранения на свету (первый столбец – до, второй – после окисления)».

*Исходное количество любого из указанных компонентов масла (до процесса окисления) принималось равным 100%.
Основные компоненты семян тмина – лимонен и карвон. АО активность масла тмина занимает среднее положение в ряду активности и сравнима с АО активностью масла фенхеля. Состав масла за время хранения изменился незначительно (рис. 10). Окисление карвона, хотя и не очень существенное, позволяет считать его антиоксидантом в данном образце.

**Выводы**

Методом капиллярной газовой хроматографии найдено, что все изученные в работе масла обладали АО активностью; причем наибольшей активностью обладало эфирное масло маслины, а наименьшей – черного перца.

Наиболее сильными антиоксидантами в изученных эфирных маслах являлись циклические монотерпено- вые углеводороды – α- и γ-терпинены, α-терпиниол, а также цитралы – нераль и терганиль.

Наличие в составе эфирных масел большого количества сесквитерпеноидных углеводородов – цингиберен и β-карнозиллена также обусловливает их высокую АО активность.

**Список литературы**


Поступило в редакцию 5 августа 2009 г.
После переработки 12 ноября 2009 г.